Effect of electrolyzed oxidizing water and hydrocolloid occlusive dressings on excised burn-wounds in rats.


Xin H, Zheng YJ, Hajime N, Han ZG. Department of Thoracic Surgery, China-Japan Union Hospital, Jilin University, Jilin 130031, China.

OBJECTIVE: To study the efficacy of electrolyzed oxidizing water (EOW) and hydrocolloid occlusive dressings in the acceleration of epithelialization in excised burn-wounds in rats. METHODS: Each of the anesthetized Sprague-Dawley rats (n=28) was subjected to a third-degree burn that covered approximately 10% of the total body surface area. Rats were assigned into four groups: Group I (no irrigation), Group II (irrigation with physiologic saline), Group III (irrigation with EOW) and Group IV (hydrocolloid occlusive dressing after EOW irrigation). Wounds were observed macroscopically until complete epithelialization was present, then the epithelialized wounds were examined microscopically. RESULTS: Healing of the burn wounds was the fastest in Group IV treated with hydrocolloid occlusive dressing together with EOW. Although extensive regenerative epidermis was seen in each Group, the proliferations of lymphocytes and macrophages associated with dense collagen deposition were more extensive in Group II, III and IV than in Group I. These findings were particularly evident in Group III and IV. CONCLUSIONS: Wound Healing may be accelerated by applying a hydrocolloid occlusive dressing on burn surfaces after they are cleaned with EOW. PMID:12857518

Effect of electrolyzed water on wound healing.


Electrolyzed water accelerated the healing of full-thickness cutaneous wounds in rats, but only anode chamber water (acid pH or neutralized) was effective. Hypochlorous acid (HOCl), also produced by electrolysis, was ineffective, suggesting that these types of electrolyzed water enhance wound healing by a mechanism unrelated to the well-known antibacterial action of HOCl. One possibility is that reactive oxygen species, shown to be electron spin resonance spectra present in anode chamber water, might trigger early wound healing through fibroblast migration and proliferation. PMID:11121980